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Abstract. In this paper, we introduce a novel problem of audio-visual
event localization in unconstrained videos. We define an audio-visual
event as an event that is both visible and audible in a video segment.
We collect an Audio-Visual Event (AVE) dataset to systemically investi-
gate three temporal localization tasks: supervised and weakly-supervised
audio-visual event localization, and cross-modality localization. We de-
velop an audio-guided visual attention mechanism to explore audio-visual
correlations, propose a dual multimodal residual network (DMRN) to
fuse information over the two modalities, and introduce an audio-visual
distance learning network to handle the cross-modality localization. Our
experiments support the following findings: joint modeling of auditory
and visual modalities outperforms independent modeling, the learned at-
tention can capture semantics of sounding objects, temporal alignment
is important for audio-visual fusion, the proposed DMRN is effective
in fusing audio-visual features, and strong correlations between the two
modalities enable cross-modality localization.
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1 Introduction

Studies in neurobiology suggest that the perceptual benefits of integrating vi-
sual and auditory information are extensive [1]. For computational models, they
reflect in lip reading [2,3], where correlations between speech and lip movements
provide a strong cue for linguistic understanding; in music performance [4], where
vibrato articulations and hand motions enable the association between sound
tracks and the performers; and in sound synthesis [5], where physical interac-
tions with different types of material give rise to plausible sound patterns. Albeit
these advances, these models are limited in their constrained domains.

Indeed, our community has begun to explore marrying computer vision with
audition in-the-wild for learning a good representation [6,7,8]. For example, a
sound network is learned in [6] by a visual teacher network with a large amount
of unlabeled videos, which shows better performance than learning in a single
modality. However, they have all assumed that the audio and visual contents
in a video are matched (which is often not the case as we will show) and they
are yet to explore whether the joint audio-visual representations can facilitate
understanding unconstrained videos.
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Fig. 1: (a) illustrates audio-visual event localization. The first two rows show a 5s video
sequence with both audio and visual tracks for an audio-visual event chainsaw (event
is temporally labeled in yellow boxes). The third row shows our localization results (in
red boxes) and the generated audio-guided visual attention maps. (The first frame does
not contain the chainsaw event, hence the attention focuses on background regions.)
(b) illustrates cross-modality localization for V2A and A2V

In this paper, we study a family of audio-visual event temporal localization
tasks (see Fig. 1) as a proxy to the broader audio-visual scene understanding
problem for unconstrained videos. We pose and seek to answer the following
questions: (Q1) Does inference jointly over auditory and visual modalities out-
perform inference over them independently? (Q2) How does the result vary under
noisy training conditions? (Q3) How does knowing one modality help model the
other modality? (Q4) How do we best fuse information over both modalities?
(Q5) Can we locate the content in one modality given its observation in the
other modality? Notice that the individual questions might be studied in the
literature, but we are not aware of any work that conducts a systematic study
to answer these collective questions as a whole.

In particular, we define an audio-visual event as an event that is both visible
and audible in a video segment, and we establish three tasks to explore afore-
mentioned research questions: 1) supervised audio-visual event localization, 2)
weakly-supervised audio-visual event localization, and 3) event-agnostic cross-
modality localization. The first two tasks aim to predict which temporal segment
of an input video has an audio-visual event and what category the event belongs
to. The weakly-supervised setting assumes that we have no access to the tem-
poral event boundary but an event tag at video-level for training. Q1-Q4 will
be explored within these two tasks. In the third task, we aim to locate the cor-
responding visual sound source temporally within a video from a given sound
segment and vice versa, which will answer Q5.

We propose both baselines and novel algorithms to solve the above three
tasks. For the first two tasks, we start with a baseline model treating them as
a sequence labeling problem. We utilize CNN [9] to encode audio and visual
inputs, adapt LSTM [10] to capture temporal dependencies, and apply Fully
Connected (FC) network to make the final predictions. Upon this baseline model,
we introduce an audio-guided visual attention mechanism to verify whether audio
can help attend visual features; it also implies spatial locations for sounding
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objects as a side output. Furthermore, we investigate several audio-visual feature
fusion methods and propose a novel dual multimodal residual fusion network that
achieves the best fusion results. For weakly-supervised learning, we formulate
it as a Multiple Instance Learning (MIL) [11] task, and modify our network
structure via adding a MIL pooling layer to handle the problem. To address
the harder cross-modality localization task, we propose an audio-visual distance
learning network that measures the relativeness of any given pair of audio and
visual content. It projects audio and visual features into subspaces with the same
dimension. Contrastive loss [12] is introduced to learn the network.

Observing that there is no publicly available dataset directly suitable for our
tasks, we collect a large video dataset that consists of 4143 10-second videos
with both audio and video tracks for 28 audio-visual events and annotate their
temporal boundaries. Videos in our dataset are originated from YouTube, thus
they are unconstrained. Our extensive experiments support the following find-
ings: modeling jointly over auditory and visual modalities outperforms modeling
independently over them, audio-visual event localization in a noisy condition
can still achieve promising results, the audio-guided visual attention can well
capture semantic regions covering sounding objects and can even distinguish
audio-visual unrelated videos, temporal alignment is important for audio-visual
fusion, the proposed dual multimodal residual network is effective in addressing
the fusion task, and strong correlations between the two modalities enable cross-
modality localization. These findings have paved a way for our community to
solve harder, high-level understanding problems in the future, such as video cap-
tioning [13] and movieQA [14], where the auditory modality plays an important
role in understanding video but lacks effective modeling.

Our work makes the following contributions: (1) a family of three audio-visual
event localization tasks; (2) an audio-guided visual attention model to adap-
tively explore the audio-visual correlations; (3) a novel dual multimodal resid-
ual network to fuse audio-visual features; (4) an effective audio-visual distance
learning network to address cross-modality localization; (5) a large audio-visual
event dataset containing more than 4K unconstrained and annotated videos,
which to the best of our knowledge, is the largest dataset for sound event detec-
tion. Dataset, code, and supplementary material are available on our webpage:
https://sites.google.com/view/audiovisualresearch.

2 Related Work

In this section, we first describe how our work differs from closely-related topics:
sound event detection, temporal action localization and multimodal machine
learning, then discuss relations to recent works in modeling vision-and-sound.

Sound event detection considered in the audio signal processing community
aims to detect and temporally locate sound events in an acoustic scene. Ap-
proaches based on Hidden Markov Models (HMM), Gaussian Mixture Models
(GMM), feed-forward Deep Neural Networks (DNN), and Bidirectional Long
Short-Term Memory (BLSTM) [15] are developed in [16,17,18,19]. These meth-

https://sites.google.com/view/audiovisualresearch
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ods focus on audio signals, and visual signals have not been explored. Corre-
sponding datasets, e.g., TUT [20], for sound event detection only contain sound
tracks, and are not suitable for audio-visual scene understanding.

Temporal action localization aims to detect and locate actions in videos. Most
works cast it as a classification problem and utilize a temporal sliding window
approach, where each window is considered as an action candidate subject to
classification [21]. Escorcia et al. [22] present a deep action proposal network
that is effective in generating temporal action proposals for long videos and
can speed up temporal action localization. Recently, Shou et al. [23] propose an
end-to-end Segment-based 3D CNN method (S-CNN), Zhao et al. [24] present
a structured segment network (SSN), and Lea et al. [25] develop an Encoder-
Decoder Temporal Convolutional Network (ED-TCN) to hierarchically model
actions. Different from these works, an audio-visual event in our consideration
may contain multiple actions or motionless sounding objects, and we model
over both audio and visual domains. Nevertheless, we extend the ED-TCN and
SSN methods to address our supervised audio-visual event localization task and
compare them in Sec. 6.3.

Multimodal machine learning aims to learn joint representations over mul-
tiple input modalities, e.g., speech and video, image and text. Feature fusion is
one of the most important part for multimodal learning [26], and many differ-
ent fusion models have been developed, such as statistical models [27], Multiple
Kernel Learning (MKL) [28,29], Graphical models [30,31]. Although some muti-
modal deep networks have been studied in [31,32,33,34,35,36,37], which mainly
focus on joint audio-visual representation learning based on Autoencoder or deep
Boltzmann machines [32], we are interested in investigating the best models to
fuse learned audio and visual features for localization purpose.

Recently, some inspiring works are developed for modeling vision-and-sound
[8,6,7,5,38]. Aytar et al. [6] use a visual teacher network to learn powerful sound
representations from unlabeled videos. Owens et al. [7] leverage ambient sounds
as supervision to learn visual representations. Arandjelovic and Zisserman [8]
learn both visual and audio representations in an unsupervised manner through
an audio-visual correspondence task, and in [39], they further locate sound source
spatially in an image based on an extended correspondence network. Aside from
works in representation learning, audio-visual cross-modal synthesis is studied in
[7,40,41], and associations between natural image scenes and accompanying free-
form spoken audio captions are explored in [38]. Concurrently, some interesting
and related works on sound source separation, localization and audio-visual rep-
resentation learning are explored in [42,43,44,45,46]. Unlike the previous works,
in this paper, we systematically investigate audio-visual event localization tasks.

3 Dataset and Problems

AVE: The Audio-Visual Event Dataset To the best of our knowledge, there
is no publicly available dataset directly suitable for our purpose. Therefore, we
introduce the Audio-Visual Event (AVE) dataset , a subset of AudioSet [47], that
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Church bell Man speaking Dog barking Airplane Racing car Women speaking Helicopter Violin Flute

Ukulele Frying food Truck Shofar Motocycle Guitar Train Clock Banjo

Goat Bady crying Bus Chainsaw Cat Horse Toilet flush Rodent Accordian

Fig. 2: The AVE dataset. Some examples in the dataset are shown. The distribution of
videos in different categories and the distribution of event lengths are illustrated

contains 4143 videos covering 28 event categories and videos in AVE are tempo-
rally labeled with audio-visual event boundaries. Each video contains at least one
2s long audio-visual event. The dataset covers a wide range of audio-visual events
(e.g., man speaking, woman speaking, dog barking, playing guitar, and frying
food etc.) from different domains, e.g., human activities, animal activities, music
performances, and vehicle sounds. We provide examples from different categories
and show the statistics in Fig. 2. Each event category contains a minimum of
60 videos and a maximum of 188 videos, and 66.4% videos in the AVE contain
audio-visual events that span over the full 10 seconds. Next, we introduce three
different tasks based on the AVE to explore the interactions between auditory
and visual modalities.

Fully and Weakly-Supervised Event Localization The goal of event local-
ization is to predict the event label for each video segment, which contains both
audio and visual tracks, for an input video sequence. Concretely, for a video
sequence, we split it into T non-overlapping segments {Vt, At}Tt=1, where each
segment is 1s long (since our event boundary is labeled at second-level), and Vt
and At denote the visual content and its corresponding audio counterpart in a
video segment, respectively. Let y t = {ykt |ykt ∈ {0, 1}, k = 1, ..., C,

∑C
k=1 y

k
t = 1}

be the event label for that video segment. Here, C is the total number of AVE
events plus one background label.

For the supervised event localization task, the event label y t of each visual
segment Vt or audio segment At is known during training. We are interested in
event localization in audio space alone, visual space alone and the joint audio-
visual space. This task explores whether or not audio and visual information
can help each other improve event localization. Different than the supervised
setting, in the weakly-supervised manner we have only access to a video-level
event tag, and we still aim to predict segment-level labels during testing. The
weakly-supervised task allows us to alleviate the reliance on well-annotated data
for modelings of audio, visual and audio-visual.

Cross-Modality Localization In the cross-modality localization task, given
a segment of one modality (auditory/visual), we would like to find the position
of its synchronized content in the other modality (visual/auditory). Concretely,
for visual localization from audio (A2V), given a l-second audio segment Â from
{At}Tt=1, where l < T , we want to find its synchronized l-second visual segment



6 Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu

Fig. 3: (a) Audio-visual event localization framework with audio-guided visual attention
and multimodal fusion. One timestep is illustrated, and note that the fusion network
and FC are shared for all timesteps. (b) Audio-visual distance learning network

within {Vt}Tt=1. Similarly, for audio localization from visual content (V2A), given
a l-second video segment V̂ from {Vt}Tt=1, we would like to find its l-second audio
segment within {At}Tt=1. This task is conducted in the event-agnostic setting such
that the models developed for this task are expected to work for general videos
where the event labels are not available. For evaluation, we only use short-event
videos, in where the lengths of audio-visual event are all shorter than 10s.

4 Methods for Audio-Visual Event Localization

First, we present the overall framework that treats the audio-visual event lo-
calization as a sequence labeling problem in Sec. 4.1. Upon this framework, we
propose our audio-guided visual attention in Sec. 4.2 and a novel dual multi-
modal residual fusion network in Sec. 4.3. Finally, we extend this framework to
work in weakly-supervised setting in Sec. 4.4.

4.1 Audio-Visual Event Localization Network

Our network mainly consists of five modules: feature extraction, audio-guided
visual attention, temporal modeling, multimodal fusion and temporal labeling
(see Fig. 3(a)). The feature extraction module utilizes pre-trained CNNs to ex-
tract visual features vt = [v1t , ..., v

k
t ] ∈ Rdv×k and audio features at ∈ Rda from

each Vt and At, respectively. Here, dv denotes the number of CNN visual feature
maps, k is the vectorized spatial dimension of each feature map, and da denotes
the dimension of audio features. We use an audio-guided visual attention model
to generate a context vector vattt ∈ Rdv (see details in Sec. 4.2). Two separate
LSTMs take vattt and at as inputs to model temporal dependencies in the two
modalities respectively. For an input feature vector Ft at time step t, the LSTM
updates a hidden state vector ht and a memory cell state vector ct:

ht, ct = LSTM(Ft, ht−1, ct−1) , (1)

where Ft refers to vattt or at in our model. For evaluating the performance of the
proposed attention mechanism, we compare to models that do not use attention;
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we directly feed global average pooling visual features and audio features into
LSTMs as baselines. To better incorporate the two modalities, we introduce a
multimodal fusion network (see details in Sec. 4.3). The audio-visual representa-
tion h∗t is learned by a multimodal fusion network with audio and visual hidden
state output vectors hvt and hat as inputs. This joint audio-visual representation
is used to output event category for each video segment. For this, we use a shared
FC layer with the Softmax activation function to predict probability distribu-
tion over C event categories for the input segment and the whole network can
be trained with a multi-class cross-entropy loss.

4.2 Audio-Guided Visual Attention

Fig. 4: (a) Audio-guided visual at-
tention mechanism. (b) Dual mul-
timodal residual network for audio-
visual feature fusion

Psychophysical and physiological evidence
shows that sound is not only informative
about its source but also its location [48].
Based on this, Hershey and Movellan [49]
introduce an exploratory work on localiz-
ing sound sources utilizing audio-visual syn-
chrony. It shows that the strong correlations
between the two modalities can be used to
find image regions that are highly correlated
to the audio signal. Recently, [7,39] show
that sound indicates object properties even
in unconstrained images or videos. These
works inspire us to use audio signal as a
means of guidance for visual modeling.

Given that attention mechanism has
shown superior performance in many appli-
cations such as neural machine translation
[50] and image captioning [51,52], we use it
to implement our audio-guided visual atten-
tion (see Fig. 3(a) and Fig. 4(a)). The at-
tention network will adaptively learn which visual regions in each segment of a
video to look for the corresponding sounding object or activity.

Concretely, we define the attention function fatt and it can be adaptively
learned from the visual feature map vt and audio feature vector at. At each time
step t, the visual context vector vattt is computed by:

vattt = fatt(at, vt) =

k∑
i=1

witv
i
t , (2)

where wt is an attention weight vector corresponding to the probability distri-
bution over k visual regions that are attended by its audio counterpart. The
attention weights can be computed based on MLP with a Softmax activation
function:

wt = Softmax(xt) , (3)
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xt = Wfσ(WvUv(vt) + (WaUa(at))1
T ) , (4)

where Uv and Ua, implemented by a dense layer with nonlinearity, are two trans-
formation functions that project audio and visual features to the same dimension
d, Wv ∈ Rk×d, Wa ∈ Rk×d, Wf ∈ R1×k are parameters, the entries in 1 ∈ Rk are
all 1, σ(·) is the hyperbolic tangent function, and wt ∈ Rk is the computed at-
tention map. The attention map visualization results show that the audio-guided
attention mechanism can adaptively capture the location information of sound
source (see Fig. 5), and it can also improve temporal localization accuracy (see
Tab. 1).

4.3 Audio-Visual Feature Fusion

Our fusion method is designed based on the philosophy in [32], which processes
multiple features separately and then learns a joint representation using a mid-
dle layer. To combine features coming from visual and audio modalities, inspired
by the Mutimodal Residual Network (MRN) in [53] (which works for text-and-
image), we introduce a Dual Multimodal Residual Network (DMRN). The MRN
adopts a textual residual branch and feeds transformed visual features into differ-
ent textual residual blocks, where only textual features are updated. In contrary,
the proposed DMRN shown in Fig. 4(b) updates both audio and visual features
simultaneously.

Given audio and visual features hat and hvt from LSTMs, the DMRN will
compute the updated audio and visual features:

ha
′

t = σ(hat + f(hat , h
v
t )) , (5)

hv
′

t = σ(hvt + f(hat , h
v
t )) , (6)

where f(·) is an additive fusion function, and the average of ha
′

t and hv
′

t is used
as the joint representation h∗t for labeling the video segment. Here, the update
strategy in DMRN can both preserve useful information in the original modality
and add complimentary information from the other modality. Simply, we can
stack multiple residual blocks to learn a deep fusion network with updated ha

′

t

and hv
′

t as inputs of new residual blocks. However, we empirically find that it does
not improve performance by stacking many blocks for both MRN and DMRN.
We argue that the network becomes harder to train with increasing parameters
and one block is enough to handle this simple fusion task well.

We would like to underline the importance of fusing audio-visual features
after LSTMs for our task. We empirically find that late fusion (fusion after tem-
poral modeling) is much better than early fusion (fusion before temporal mod-
eling). We suspect that the auditory and visual modalities are not temporally
aligned. Temporal modeling by LSTMs can implicitly learn certain alignments
which can help make better audio-visual fusion. The empirical evidences will be
shown in Tab. 2.
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4.4 Weakly-Supervised Event Localization

To address the weakly-supervised event localization, we formulate it as a MIL
problem and extend our framework to handle noisy training condition. Since
only video-level labels are available, we infer label of each audio-visual segment
pair in the training phase, and aggregate these individual predictions into a
video-level prediction by MIL pooling as in [54]:

m̂ = g(m1,m2, ...,mT ) =
1

T

T∑
t=1

mt , (7)

where m1, ...,mT are predictions from the last FC layer of our audio-visual event
localization network, and g(·) averages over all predictions. The probability dis-
tribution of event category for the video sequence can be computed using m̂ over
the Softmax. During testing, we can predict the event category for each segment
according to computed mt.

5 Method for Cross-Modality Localization

To address the cross-modality localization problem, we propose an audio-visual
distance learning network (AVDLN) as illustrated in Fig. 3(b); we notice similar
networks are studied in concurrent works [39,55]. Our network can measure
the distance Dθ(Vi, Ai) for a given pair of Vi and Ai. At test time, for visual
localization from audio (A2V), we use a sliding window method and optimize
the following objective:

t∗ = argmin
t

l∑
s=1

Dθ(Vs+t−1, Âs) , (8)

where t∗ ∈ {1, ..., T − l+1} denotes the start time when visual and audio content
synchronize, T is the total length of a testing video sequence, and l is the length
of the audio query Â. This objective function computes an optimal matching by
minimizing the cumulative distance between the audio segments and the visual
segments. Therefore, {Vi}t

∗+l−1
i=t∗ is the matched visual content. Similarly, we can

define audio localization from visual content (V2A); we omit it here for a concise
writing. Next, we describe the network used to implement the matching function.

Let {Vi, Ai}Ni=1 be N training samples and {yi}Ni=1 be their labels, where Vi
and Ai are a pair of 1s visual and audio segments, yi ∈ {0, 1}. Here, yi = 1 means
that Vi and Ai are synchronized. The AVDLN will learn to measure distances
between these pairs. The network encodes them using pre-trained CNNs, and
then performs dimensionality reduction for encoded audio and visual represen-
tations using two different two-layer FC networks. The outputs of final FC layers
are {Rvi , Rai }Ni=1. The distance between Vi and Ai is measured by the Euclidean
distance between Rvi and Rai :

Dθ(Vi, Ai) = ||Rvi −Rai ||2 . (9)
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To optimize the parameters θ of the distance metric Dθ, we introduce the con-
trastive loss proposed by Hadsell et al. [12]. The contrastive loss function is:

LC = yiD
2
θ(Vi, Ai) + (1− yi)(max(0, th−Dθ(Vi, Ai)))

2, (10)

where th > 0 is a margin. If a dissimilar pair’s distance is less than th, the loss
will make the distance Dθ bigger; if their distance is bigger than the margin, it
will not contribute to the loss.

6 Experiments

First, we introduce the used visual and audio representations in Sec. 6.1. Then,
we describe the compared baseline models and evaluation metrics in Sec 6.2.
Finally, we show and analyze experimental results of different models in Sec. 6.3.

6.1 Visual and Audio Representations

It has been suggested that CNN features learned from a large-scale dataset (e.g.
ImageNet [56], AudioSet [47]) are highly generic and powerful for other vision
or audition tasks. So, we adopt pre-trained CNN models to extract features for
visual segments and their corresponding audio segments.

For each 1s visual segment, we extract pool5 feature maps from sampled 16
RGB video frames by VGG-19 network [57], which is pre-trained on ImageNet,
and then utilize global average pooling [58] over the 16 frames to generate one
512×7×7-D feature map. We also explore the temporal visual features extracted
by C3D [59], which is capable of learning spatio-temporal visual features. But
we do not observe significant improvements when combining C3D features. We
extract a 128-D audio representation for each 1s audio segment via a VGG-like
network [60] pre-trained on AudioSet.

6.2 Baselines and Evaluation Metrics

To validate the effectiveness of the joint audio-visual modeling, we use single-
modality models as baselines, which only use audio-alone or visual-alone features
and share the same structure with our audio-visual models. To evaluate the
audio-guided visual attention, we compare our V-att and A+V-att models with
V and A+V models in fully and weakly supervised settings. Here, V-att models
adopt audio-guided visual attention to pool visual feature maps, and the other V
models use global average pooling to compute visual feature vectors. We visualize
generated attention maps for subjective evaluation. To further demonstrate the
effectiveness of the proposed networks, we also compare them with a state-of-
the-art temporal labeling network: ED-TCN [25] and proposal-based SSN [24].

We compare our fusion method: DMRN with several network-based multi-
modal fusion methods: Additive, Maxpooling (MP), Gated, Multimodal Bilinear
(MB), and Gated Multimodal Bilinear (GMB) in [37], Gated Multimodal Unit
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Fig. 5: Qualitative visualization of audio-guided visual attention. The semantic regions
containing many different sound sources, such as barking dog, crying boy/babies, speak-
ing woman, horning bus, guitar etc, can be adaptively captured by our attention model

Fig. 6: Visualization of visual attention maps on two challenging examples. The first
and third rows are 10 video frames uniformly extracted from two 10s videos, and the
second and fourth rows are generated attention maps. The yellow box (groundtruth
label) denotes that the frame contain audio-visual event in which sounding object
is visible and sound is audible. If there is no audio-visual event in a frame, random
background regions will be attended (5th frame of the second example); otherwise, the
attention will focus on sounding sources

(GMU) in [61], Concatenation (Concat), and MRN [53]. Three different fusion
strategies: early, late and decision fusions are explored. Here, early fusion meth-
ods directly fuse audio features from pre-trained CNNs and attended visual
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Table 1: Event localization prediction accuracy (%) on AVE dataset. A, V, V-att, A+V,
A+V-att denote that these models use audio, visual, attended visual, audio-visual
and attended audio-visual features, respectively. W-models are trained in a weakly-
supervised manner. Note that audio-visual models all fuse features by concatenating
the outputs of LSTMs

Models A V V-att A+V A+V-att W-A W-V W-V-att W-A+V W-A+V-att

Accuracy 59.5 55.3 58.6 71.4 72.7 53.4 52.9 55.6 63.7 66.7

features; late fusion methods fuse audio and visual features from outputs of two
LSTMs; and decision fusion methods fuse the two modalities before Softmax
layer. To further enhance the performance of DMRN, we also introduce a vari-
ant model of DMRN called dual multimodal residual fusion ensemble (DMRFE)
method, which feeds audio and visual features into two separated blocks and
then use average ensemble to combine the two predicted probabilities.

For supervised and weakly-supervised event localization, we use overall ac-
curacy as an evaluation metric. For cross-modality localization, e.g., V2A and
A2V, if a matched audio/visual segment is exactly the same as its groundtruth,
we regard it as a good matching; otherwise, it will be a bad matching. We com-
pute the percentage of good matchings over all testing samples as prediction
accuracy to evaluate the performance of cross-modality localization. To validate
the effectiveness of the proposed model, we also compare it with deep canonical
correlation analysis (DCCA) method [62].

6.3 Experimental Comparisons

Table 1 compares different variations of our proposed models on supervised and
weakly-supervised audio-visual event localization tasks. Table 2 shows event lo-
calization performance of different fusion methods. Figures 5 and 6 illustrate
generated audio-guided visual attention maps.

To benchmark our models with state-of-the-art temporal action localization
methods, we extend the SSN [24] and ED-TCN [25] to address the supervised
audio-visual event localization, and train them on AVE. The SSN and ED-TCN
achieve 26.7% and 46.9% overall accuracy, respectively. For comparison, our V
model with the same features achieves 55.3%.
Audio and Visual. From Tab. 1, we observe that A outperforms V and W-A
is also better than W-V. It demonstrates that audio features are more powerful
to address audio-visual event localization task on the AVE dataset. However,
when we look at each individual event, using audio is not always better than
using visual. We observe that V is better than A for some events (e.g. car,
motocycle, train, bus). Actually, most of these events are outdoor. Audios in
these videos can be very noisy: several different sounds may be mixed together
(e.g. people cheers with a racing car), and may have very low intensity (e.g.
horse sound from far distance). For these conditions, visual information will give
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Table 2: Event localization prediction accuracy (%) of different feature fusion methods
on AVE dataset. These methods all use same audio and visual features as inputs. Top-2
results in each line are highlighted

Methods Additive MP Gated MB GMU GMB Concat MRN DMRN DMRFE

Early Fusion 59.9 67.9 67.9 69.2 70.5 70.2 61.0 69.8 68.0 -

Late Fusion 71.3 71.4 70.5 70.5 71.6 71.0 72.7 70.8 73.1 73.3

Decision Fusion 70.5 64.5 65.2 64.6 67.6 67.3 69.7 63.8 70.4 -

us more discriminative and accurate information to understand events in videos.
A is much better than V for some events (e.g. dog, man and woman speaking,
baby crying). Sounds will provide clear cues for us to recognize these events.
For example, if we hear barking sound, we know that there may be a dog. We
also observe that A+V is better than both A and V, and W-A+V is better
than W-A and W-V. From the above results and analysis, we can conclude that
auditory and visual modalities will provide complementary information for us to
understand events in videos. The results also demonstrate that our AVE dataset
is suitable for studying audio-visual scene understanding tasks.

Audio-Guided Visual Attention. The quantitative results (see Tab. 1) show
that V-att is much better than V (a 3.3% absolute improvement) and A+V-
att outperforms A+V by 1.3%. We show qualitative results of our attention
method in Fig. 5. We observe that a range of semantic regions in many different
categories and examples can be attended by sound, which validates that our
attention network can learn which visual regions to look at for sounding objects.
An interesting observation is that the audio-guided visual attention tends to
focus on sounding regions, such as man’s mouth, head of crying boy etc, rather
than whole objects in some examples. Figure 6 illustrates two challenging cases.
For the first example, the sounding helicopter is quite small in the first several
frames but our attention model can still capture its locations. For the second
example, the first five frames do not contain an audio-visual event; in this case,
attentions are spread on different background regions. When the rat appears in
the 5th frame but is not making any sound, the attention does not focus on the
rat. When the rat sound becomes audible, the attention focuses on the sounding
rat. This observation validates that the audio-guided attention mechanism is
helpful to distinguish audio-visual unrelated videos, and is not just to capture a
saliency map with objects.

Audio-Visual Fusion. Table 2 shows audio-visual event localization prediction
accuracy of different multimodal feature fusion methods on AVE dataset. Our
DMRN model in the late fusion setting can achieve better performance than all
compared methods, and our DMRFE model can further improve performance.
We also observe that late fusion is better than early fusion and decision fu-
sion. The superiority of late fusion over early fusion demonstrates that temporal
modeling before audio-visual fusion is useful. We know that auditory and visual
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modalities are not completely aligned, and temporal modeling can implicitly
learn certain alignments between the two modalities, which is helpful for the
audio-visual feature fusion task. The decision fusion can be regard as a type of
late fusion but using lower dimension (same as the category number) features.
The late fusion outperforms the decision fusion, which validates that process-
ing multiple features separately and then learning joint representation using a
middle layer rather than the bottom layer is an efficient fusion way.

Full and Weak Supervision. Obviously, supervised models are better than
weakly supervised ones, but quantitative comparisons show that weakly-supervised
approaches achieve promising event localization performance, which demon-
strates the effectiveness of the MIL frameworks, and validates that the audio-
visual event localization task can be addressed even in a noisy condition.

Table 3: Accuracy on cross-modality
localization. A2V: visual localization
from audio segment query; V2A: au-
dio localization from visual segment
query

Models AVDLN DCCA

A2V 44.8 34.8

V2A 35.6 34.1

Cross-Modality Localization. Table 3 re-
ports the prediction accuracy of our method
and DCCA [62] on cross-modality localiza-
tion task. Our AVDL outperforms DCCA
over a large margin both on A2V and
V2A tasks. Even using the strict evalu-
ation metric (which counts only the ex-
act matches), our models on both sub-
tasks: A2V and V2A, show promising re-
sults, which further demonstrates that there
are strong correlations between audio and
visual modalities, and it is possible to ad-
dress the cross-modality localization for un-
constrained videos.

7 Conclusion

In this work, we study a suit of five research questions in the context of three
audio-visual event localization tasks. We propose both baselines and novel algo-
rithms to address each of the three tasks. Our systematic study well supports
our findings: modeling jointly over auditory and visual modalities outperforms
independent modeling, audio-visual event localization in a noisy condition is
still tractable, the audio-guided visual attention is able to capture semantic re-
gions of sound sources and can even distinguish audio-visual unrelated videos,
temporal alignments are important for audio-visual feature fusion, the proposed
dual residual network is capable of audio-visual fusion, and strong correlations
existing between the two modalities enable cross-modality localization.
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